1) Use any method to find the product.

a)
$$(2x^2 - 3x + 5)(x - 2)$$

b)
$$(xy - 3)^3$$

2) a. Use long division to divide: $(-x^3 + 3x^2 + x) \div (x - 2)$ b. Is (x - 2) a factor of the polynomial?

3) Simplify the expression using only positive exponents

$$\frac{7x^{-3}y^9}{(2x^4y^{-6})^{-2}}$$

4) Express the following with a rational denominator:

$$\frac{4}{3+\sqrt{2}}$$

5) Express in simplest radical form: $\sqrt{245x^3y^7}$

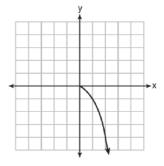
6) Factor each expression completely:

a)
$$3m^4 - 75$$
 b) $72 + 18x - 2x^2$

d)
$$x^4 + 3x^3 - 4x^2 - 12x$$
 e) $4x^2y^4 - 25x^4z^6$

e)
$$4x^2y^4 - 25x^4z^6$$

f)
$$9x^2y^2 - 18xy + 8$$


i)
$$3y^4 + 9y^2 - 6y^3 - 18y$$

7) Find the product of the following, in simplest a + bi form.

$$-6 + \sqrt{-49}$$
 and $2 - \sqrt{-81}$

- 8) Simplify the expression: $i^{100} + i^{101} + i^{102}$
- 9) Find the product in simplest a + bi form: (6+2i)(4-3i)

- 10) If $g(x) = x^2 4x + 3$, find the value(s) of x if g(x) = 0.
- 11) Determine the domain and range of the given graph.

- 12) If $f(x) = x^2$ and g(x) = 2x + 1, then determine f(g(3x)).
- 13) Given function tables on the right, find each:

a)	f(g(3))
,	. (3)	,	•

b)
$$g(g(4))$$

_	_						
	X	1	2	3	4	5	
	f (x)	3	4	5	6	7	
	X	3	4	5	6	7	
	g(x)	4	6	8	10	12	

14) Find the domain of each given function below:

a)
$$f(x) = \frac{-3}{x^2 - 1}$$

b)
$$g(x) = \sqrt{2x + 8}$$

c)
$$h(x) = \frac{1}{\sqrt{5-x}}$$

15) Find the inverse of the following functions:

a.
$$f(x) = \sqrt{x-4}$$

b.
$$g(x) = \frac{x}{x+1}$$

16) Using the tables on the grid, find the average rate of change on the

interval [9, 12].

x	1	3.8	4.7	9	13.8	12
y	3	5.1	8.7	15.8	25.1	30.86

17) Find the average rate of change for each function below:

$$f(x) = x^2 - 4x - 12$$
 on [-1, 7]

18) Determine if each is even, odd, or neither. Justify your reasoning.

b)
$$y = |x| - 3$$

c)
$$y = x^2 - 3$$

b)
$$y = |x| - 3$$
 c) $y = x^2 - 3$ d) $f(x) = -3x^3 + 2x^2$

19) Find the sum in simplest radical form: $\sqrt{5x} + 7\sqrt{80x} + 2\sqrt{180x}$

20) Solve the equation using any method, and show in simplest radical form. $x^2 + 4 = -12x$

21) Solve the equation and express the roots in simplest a + bi form:

$$x(x - 8) = -17$$

22) Find the solution set, algebraically: $2x^2 = y - 2x - 7$ 10 = y - x

23) Find the solution set, algebraically: x + y = 1 $x^2 + y^2 = 61$ 25) Find the solution set: $\sqrt{x+4} + 2 = x$

26) Write the equation of the quadratic given that one root is 4 - 3i.

27) Write the equation of the quadratic given that one root is 5 + 2i.

28) Solve the polynomial equation for all zeros: $2x^3 + 14x^2 + 20x = 0$

29) Determine the nature of the roots of the quadratic $-3x^2 + 4x - 2 = 0$.

30) Consider the polynomial function: $f(x) = x^3 + 2x^2 - 13x + 10$

- a) Show that x = 4 is not a zero of the function.
- b) Given x = 1 is a zero, what must be a factor of f(x)?
- c) Find the remaining zeros.
- d) Express the polynomial in terms of linear factors.